

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in CSE (AI & ML)

COURSE STRUCTURE

Batch: 2022-2026

	Semester VII (Fourth Year) Curriculum							
Sl. No	Sl. No Type of Course Course Name Hours per week						Credit Points	
	course	Code		Lecture	Tutorial	Practical	Sessional	
	Theory Papers							
1	Professional Core Course	PCCCS701	Compiler Design	3	0	0	0	3
2	Professional Elective Course	PECCS701	Elective-III	3	0	0	0	3
3	Open Elective Course	OECCS701	Open Elective-I	3	0	0	0	3

4	Humanities & Social Sciences including Management course	ESP(CS)701	Essential Studies for Professionals – VII (CS)	2	0	0	0	0.5
		Total		11	0	0	0	9.5
1	Professional Core Course	PCCCS791	Compiler Design Laborat ory	Practical Pape	0	4	0	2
		Total	· · · ·	0	0	4	0	2
			S	Sessional Pape	ers			
1	Humanities & Social Sciences including Management course	SDP781	Skill Development for Professionals - VII	0	0	0	2	0.5
2	Innovative Project	PRJCS781	Project – II	0	0	12	0	6
3	Internship	SICS781	Summer Internship - I	0	0	0	0	4
	Total			0	0	12	2	10.5
	I		Mand	latory Requir	ements	1	<u> </u>	
Sl. No	Type of course	Course Code	Course Name	Hours per week				Score/Credit/ Count

1	Co- curricular & Extra Curricular Activities	MAR	Mandatory Additional Requirements (Score)	-	-	-	-	-
2	Honours	MOOCs	Massive Open Online Course (Credit)	-	-	-	-	-
3	Certification	IFC	Industry and Foreign Certification (Count)	-	-	-	-	-
		Total				16	2	22

Offered Elective List

Category	Course Name	Course Code
Professional Elective - III	ofessional Elective - III Computer Vision	
	Advanced Deep Learning	PECCS701L
Open Elective - I	Enterprise System	OECCS701A
	Entrepreneurship & Startups	OECCS701C

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in CSE (AI & ML)

DETAILED SYLLABUS

Course Code- PCCCS701 Course Title – Compiler Design Credit – 3 Category – Professional Core Course Semester – VII L:T:P:S – 3:0:2:0 Pre-requisite – Basic knowledge of Data Structures, Algorithms, Formal Language and Automata Theory

Course Outcomes:

CO1 Students will be able to learn the grammar specification for developing the lexical analyzer.

Design a given parser specification design top-down and bottom-up parsers.					
D3 Develop syntax directed translation schemes.					
4 Develop algorithms to generate code for a target machine.					
dy Material	<u>Coursera</u>	<u>NPTEL</u>	LinkedIn Learning	Infosys Springboard	
Lesson Plan					
	Develop syntax of Develop algorith	Develop syntax directed translation sche Develop algorithms to generate code for	Develop syntax directed translation schemes.Develop algorithms to generate code for a target machine.dy MaterialCourseraNPTEL	Develop syntax directed translation schemes. Develop algorithms to generate code for a target machine. dy Material Coursera NPTEL LinkedIn Learning	

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Overview of compilation & Lexical Analysis	The structure of a compiler and applications of compiler technology; Lexical analysis - The role of a lexical analyzer, specification of tokens, recognition of tokens, hand-written lexical analyzers, LEX, examples of LEX programs. Introduction to syntax analysis -Role of a parser, use of context-free grammars (CFG) in the specification of the syntax of programming languages, techniques for writing grammars for programming languages	International Academia: https://ocw.mit.edu /courses/6-004- computation- structures-spring- 2017/pages/c11/ (MIT Open Courseware): AICTE-prescribed syllabus: https://drive.google .com/file/d/11CBes IrHOERE-	8	Write a program that takes a simple code snippet (e.g., a few lines of C or a pseudo- language) as input and identifies all the tokens present, classifying them into categories like keywords, identifiers, operators, literals (integer, float, string), and	Textbook-1 Chapters: 1 to 3 Page No. – 1 to 158

(removal left recursion, etc.),		punctuation. The
context-free constructs in	n <u>mt tYX/view?usp=</u>	output should be
programming	<u>sharing</u>	a list of (token,
languages, parse trees and	d	token_type)
ambiguity, examples of	Industry Mapping:	pairs.
programming language gram	mars <u>https://www.course</u>	
		Implement an
	<u>ra.org/programs/ie</u>	algorithm that
	<u>m-faculty-</u>	takes a given
	<u>learning-program-</u>	regular
	<u>rtyr7/projects/goog</u>	expression (e.g.,
	<u>lecloud-form-</u>	(a b)*c) and
	parsing-with-	constructs its
	document-ai-	equivalent Non-
	python-zdlse	deterministic
	<u></u>	Finite
		Automaton
		(NFA). You can
		represent the
		NFA using
		adjacency lists or
		a similar data
		structure.
		Suuciuie.
		Write a program
		Write a program that takes an
		NFA
		(represented as
		in the previous
		question) as
		input and
		converts it into

an equivalent
Deterministic
Finite
Automaton
(DFA) using the
subset
construction
algorithm.
Design a simple
programming
language with a
few keywords,
operators, and
data types. Then,
implement a
handwritten
lexical analyzer
(without using
tools like LEX)
in a language
like Python or
Java that can
tokenize
programs written
in this small
language.
Write a LEX
program (or
Flex, its open-
source

can identify and classify the following tokens in an input file: keywords (if, else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace st		1	
classify the following tokens in an input file: keywords (if, else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as withespace			counterpart) that
following tokens in an input file: keywords (if, else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
in an input file: keywords (if, else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			classify the
in an input file: keywords (if, else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			following tokens
keywords (if, else, while, int), identifiers (starting with a letter, letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, operators (+, -, *, /). Extend the LEX program from program from the the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace statespace			
else, while, int), identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
identifiers (starting with a letter, followed by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
Image: state of the state			
Image: state of the state			(starting with a
by letters or digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
digits), integer literals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
Iterals, and basic arithmetic operators (+, -, *, /). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
arithmetic operators (+, -, *, /). Extend the LEX program program from the previous question to ignore C-style (/* (/* well as whitespace			
/). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
/). Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			operators (+, -, *,
Extend the LEX program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
program from the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			Extend the LEX
the previous question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
question to ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
ignore C-style (/* */) and C++-style (//) comments, as well as whitespace			
(/* */) and C++-style (//) comments, as well as whitespace			
C++-style (//) comments, as well as whitespace			
comments, as well as whitespace			
well as whitespace			
whitespace			
(spaces, tabs,			(spaces, tabs,
newlines). The			· -
output should			
only contain the			

ГГ	ГГ	
		identified
		tokens.
		Given a context-
		free grammar for
		a simple
		arithmetic
		expression
		language (e.g.,
		with addition,
		subtraction,
		multiplication,
		division, and
		parentheses),
		write a program
		that can:
		Determine if the
		grammar is
		ambiguous.
		(Hint: You
		might try to
		derive the same
		string in two
		different ways).
		Draw the parse
		tree for a given
		valid expression
		vulla expression

		according to the	
		grammar.	
		Write a program	
		that takes a	
		context-free	
		grammar as	
		1	
		removes any	
		immediate left	
		recursion present	
		in its production	
		rules. The output	
		should be the	
		modified	
		grammar without	
		left recursion.	
		Choose either a	
		top-down	
		parsing	
		technique (like	
		recursive	
		descent) or a	
		bottom-up	
		technique (like	
		shift-reduce) and	
		implement a	
		parser for a small	
		subset of a	
		programming	

language based
on a given
context-free
grammar. The
parser should
take a sequence
of tokens as
input and output
whether the
input is
syntactically
valid according
to the grammar.
For a top-down
parser, you
might need to
handle LL(1)
conditions.
Research and
prepare a report
or a short
presentation
explaining some
common non-
context-free
constructs found
in programming
languages (e.g.,
declaration
before use, type
checking

2	Top-down parsing	FIRST & FOLLOW sets, LL(1) conditions, predictive parsing, recursive descent parsing, error recovery. LR-parsing - Handle pruning, shift-reduce parsing, viable prefixes, valid items, LR(0) automaton, LR-parsing algorithm, SLR(1), LR(1), and LALR(1) parsing. YACC, error recovery with YACC and examples of YACC specifications. Syntax-directed definitions (attribute grammars)-Synthesized and inherited attributes, examples of SDDs, evaluation orders for attributes of an SDD, dependency graphs. S-attributed and L- attributed SDDs and their implementation using LR-parsers and recursive	International Academia: https://ocw.mit.edu /courses/6-004- computation- structures-spring- 2017/pages/c11/ (MIT Open Courseware): AICTE-prescribed syllabus: https://drive.google .com/file/d/11CBes IrHOERE- XHDJSNs1HIRON mt tYX/view?usp= sharing Industry Mapping:	10	consistency). Provide examples of how these constructs cannot be easily handled by standard context- free grammars. Write a program that takes a context-free grammar (CFG) as input and computes the FIRST and FOLLOW sets for all non- terminals in the grammar. The output should clearly display the grammar and the calculated FIRST and FOLLOW sets. Test your program with various grammars, including those with epsilon productions and	Textbook-1 Chapters: 4, 5 Page No.: 159 - 341
---	---------------------	--	--	----	---	--

descent parsers	https://www.course	left recursion.
respectively.	ra.org/programs/ie m-faculty- learning-program- rtyr7/projects/goog lecloud-form- parsing-with- document-ai- python-zdlse	Develop a program that takes a CFG and the computed FIRST and FOLLOW sets as input. The program should then check if the given grammar satisfies the LL(1) conditions. The output should indicate whether the grammar is LL(1) or not, and if not, identify the violating productions.
		Implement an algorithm that takes an LL(1) grammar (or one that can be made LL(1) by left- factoring) and constructs its

		predictive
		parsing table.
		The output
		should be a clear
		representation of
		the parsing
		table.
		Write a program
		that implements
		a non-recursive
		predictive parser
		using the
		parsing table
		generated in the
		previous
		question. The
		parser should
		take a string as
		input and
		determine if it is
		accepted by the
		grammar. The
		output should
		show the
		sequence of
		moves made by
		the parser
		(stack, input,
		action). Include
		basic error
		detection for

[]	I	
		invalid input
		strings.
		Design a simple
		context-free
		grammar (e.g.,
		for arithmetic
		expressions with
		basic operators).
		Implement a
		recursive
		descent parser
		for this grammar
		in your chosen
		programming
		language. The
		parser should
		take an input
		string and output
		whether it is a
		valid sentence of
		the grammar.
		Write a program
		that simulates
		the actions of a
		shift-reduce
		parser for a
		given grammar
		and input string.
		The program
		should output

the sequence of
stack contents,
input remaining,
and the action
(shift or reduce)
performed at
each step.
Include the
detection of
acceptance and
error states.
Implement an
algorithm that
takes a context-
free grammar
and constructs
its LR(0)
automaton (the
collection of
LR(0) items and
the transitions
between them).
The output
should clearly
represent the
states and
transitions of the
automaton.
Extend the
LR(0)

	automaton
	construction to
	generate the
	SLR(1) parsing
	table. Your
	program should
	take a grammar
	and the $LR(0)$
	automaton as
	input and
	produce the
	SLR(1) parsing
	table (action and
	goto parts).
	Handle potential
	conflicts and
	indicate if the
	grammar is
	SLR(1).
	Write a YACC
	(or Bison)
	specification for
	a simple
	programming
	language
	construct (e.g.,
	assignment
	statements,
	simple
	arithmetic
	expressions, or a

[]		r	
			basic
			conditional
			statement).
			Compile and test
			your YACC
			specification
			with valid and
			invalid input.
			Observe how
			YACC handles
			the parsing and
			reports syntax
			errors.
			Consider a
			simple syntax-
			directed
			definition
			(SDD) for
			calculating the
			value of
			arithmetic
			expressions.
			Implement a
			program that
			takes a parse
			tree (you can
			manually
			construct simple
			parse trees for
			testing) and
			evaluates the

					attributes according to the SDD rules. Demonstrate the evaluation process for both synthesized and inherited attributes (if applicable in your chosen SDD).	
3	Semantic analysis	Symbol tables and their data structures. Representation of "scope". Semantic analysis of expressions, assignment, and control-flow statements, declarations of variables and functions, function calls, etc., using S- and L-attributed SDDs (treatment of arrays and structures included). Semantic error recovery Intermediate code generation - Different intermediate representations –quadruples, triples, trees, flow graphs, SSA forms, and their uses. Translation of expressions (including array references with subscripts) and	International Academia: https://ocw.mit.edu /courses/6-004- computation- structures-spring- 2017/pages/c11/ (MIT Open Courseware): AICTE-prescribed syllabus: https://drive.google .com/file/d/11CBes IrHOERE- XHDJSNsIHIRON	10	Create functions to insert, lookup, and delete entries in the symbol table. Each entry should store at least the variable name and its data type. Demonstrate the insertion and retrieval of symbol information for a small set of declared variables. Modify the	Textbook-1 Chapters: 5, 6 Page No.: 279 to 388

• • • • •	(T 1 (1 1 4 1 1	
e	ements. Translation	<u>mt tYX/view?usp=</u>	symbol table	
	w statements – it-	<u>sharing</u>	implementation	
the	en- else,	Industry Mannings	to support the	
while-do, and s	witch. Short-circuit	Industry Mapping:	concept of	
	ol-flow translation	https://www.course	scope.	
	Boolean	ra.org/programs/ie	Implement a	
	. Back patching.	<u>m-faculty-</u>	mechanism to	
_	ustrate intermediate		enter and exit	
1		<u>learning-program-</u>	scopes.	
	generation	rtyr7/projects/goog	Demonstrate	
for all	constructs	<u>lecloud-form-</u>	how variables	
		parsing-with-	declared in	
		<u>document-ai-</u>	different scopes	
		python-zdlse	are managed and	
			how name	
			resolution works	
			(e.g., accessing	
			a variable in an	
			outer scope).	
			1 /	
			Write a program	
			that takes simple	
			expressions	
			(e.g., $a + b$, $x <$	
			y) as input.	
			Perform type	
			checking to	
			ensure that the	
			operands are	
			compatible.	
			Report any type	
			errors (e.g.,	

		adding an integer to a	
		boolean). Assume	
		variables have	
		been previously	
		declared and	
		their types are	
		available in the	
		symbol table.	
		Write a program	
		that takes	
		assignment	
		statements (e.g.,	
		x = y + 5) as	
		input. Perform	
		type	
		compatibility	
		checks between the left-hand	
		side variable and	
		the right-hand	
		side expression.	
		Handle implicit	
		type conversions	
		(if applicable in	
		your chosen	
		scope) and	
		report type	
		errors.	

 1		
		Write a program
		that takes if-
		then-else
		statements as
		input. Ensure
		that the
		condition
		expression is of
		a boolean type.
		Demonstrate the
		semantic
		analysis process.
		Write a program
		that processes
		variable and
		function
		declarations. For
		variables, store
		their names and
		types in the
		symbol table.
		For functions,
		store their
		names, return
		types, and the
		types and
		number of their
		parameters.
		Detect and
		report redeclaration

ГГ	1 1	
		errors.
		Write a program
		that takes
		function calls as
		input. Check if
		the function
		being called has
		been declared, if
		the number of
		arguments
		matches the
		function
		definition, and if
		the types of the
		actual
		arguments are
		compatible with
		the formal
		parameters.
		Report any
		errors.
		Write a program
		that takes
		arithmetic
		expressions as
		input and
		generates their
		corresponding
		quadruple
		representation.

I		
		Each quadruple
		should have the
		format
		(operator,
		operand1,
		operand2,
		result). Handle
		operator
		precedence and
		associativity
		appropriately.
		appropriatory.
		Write a program
		that takes
		assignment
		statements and
		while-do loops
		as input and
		generates their
		corresponding
		triple
		representation.
		Each triple
		should have the
		format
		(operator,
		operand1,
		operand2). For
		control flow,
		you'll need to
		represent the
		conditions and

					jump targets using triple indices. Take a simple sequence of assignments and arithmetic operations with variable reassignments. Convert this code into SSA form by introducing new versions of variables where necessary. Demonstrate the key property of SSA: each variable is assigned a value only once.	
4	Run-time environmen ts	Stack allocation of space and activation records. Access to non-local data on the stack in the case of procedures with and without nesting of procedures. Introduction to machine code generation and optimization- Simple	International Academia: <u>https://ocw.mit.edu</u> /courses/6-004- computation- structures-spring- 2017/pages/c11/	8	Design the layout of an activation record for a function in a hypothetical programming language. Include space for parameters,	Textbook-1 Chapters: 7, 8, 9, 10 Page No.: 389 to 751

machine code generation,	(MIT Open	local variables,
examples of machine-independent	Courseware):	the return
code optimizations.	AICTE-prescribed syllabus: <u>https://drive.google</u> .com/file/d/11CBes IrHOERE- XHDJSNsIHIRON mt_tYX/view?usp= sharing Industry Mapping:	address, and the control link (dynamic link). Illustrate how this layout would be instantiated for a simple function call with a few parameters and local variables.
	https://www.course ra.org/programs/ie m-faculty- learning-program- rtyr7/projects/goog lecloud-form- parsing-with- document-ai- python-zdlse	Write a program (in any language) to simulate the stack during a sequence of simple function calls (without nesting). The program should track the stack pointer and the contents of each activation record pushed onto and popped from the stack. Demonstrate

TT			
		this with at least	
		three sequential	
		function calls.	
		Write a small	
		program with a	
		function that	
		declares and	
		uses local	
		variables. Then,	
		manually trace	
		the execution,	
		showing how	
		the activation	
		record for this	
		function is	
		created on the	
		stack and how	
		the local	
		variables are	
		accessed	
		(relative to the	
		frame pointer).	
		x 1	
		Implement a	
		function that	
		takes parameters	
		passed by value.	
		Simulate the	
		stack during a	
		call to this	
		function,	

	1	
		showing how
		the parameter
		values are
		copied into the
		activation
		record.
		Implement a
		function that
		takes parameters
		passed by
		reference (if
		reference (if
		your chosen
		simulation
		language
		allows).
		Simulate the
		stack during a
		call, illustrating
		how the
		addresses of the
		actual
		arguments are
		stored in the
		activation
		record.
		Extend the stack
		simulation from
		question 2 to
		include nested
		function calls.
		Tunetion cans.

Demonstrate
how the control
links in the
activation
records are used
to maintain the
dynamic chain
and enable the
correct return
from nested
calls. Include at
least one level
of nesting.
Consider a
program with
nested
procedures and
static scoping.
Implement a
scenario where
an inner
procedure needs
to access a
variable
declared in an
enclosing
procedure.
Manually trace
the stack and
demonstrate
how the static

r	1		
			(access
		link	in the
		activ	vation record
		of th	e inner
		proc	edure would
			sed to find
		the r	ion-local
		varia	able in the
		activ	vation record
		of th	e outer
		proc	edure.
		1	
		Cho	ose a very
		simp	
			metic
		expr	ession (e.g.,
			c + c * 2).
		Desi	
		sequ	ence of
		hype	othetical
			hine code
		instr	uctions
		(e.g.	, using a
		simp	olified
		asse	mbly-like
			uage with
		instr	uctions like
		LOA	AD, STORE,
			D, MUL) to
			uate this
		expr	ession.
		Assu	ime

		
		variables a, b,
		and c are stored
		in memory
		locations.
		Take a code
		snippet with
		constant
		expressions
		(e.g., $x = 5 + 3 *$
		(c.g., x - 5 + 5) 2; y = z + 8).
		$\begin{array}{c} 2, y = 2 + 3 \\ \text{Apply the} \end{array}$
		constant folding
		optimization
		manually to
		simplify the
		code. Show the
		original and
		optimized code
		snippets.
		Write a small
		code segment
		that includes a
		variable that is
		assigned a value
		but never
		subsequently
		used. Identify
		this dead code
		and demonstrate
		how it can be

		eliminated to	
		optimize the	
		code. Show t	he
		original and	
		optimized co	de
		snippets.	

Textbooks:

1. Compilers: Principles, Techniques, and Tools, by A.V. Aho, Monica Lam, Ravi Sethi, and J.D. Ullman, (2nd ed.), Addison-Wesley, 2007 (main text book, referred to as ALSU in lab assignments).

Reference books:

- 1. K.C. Louden, Compiler Construction: Principles and Practice, Cengage Learning,
- 2. D. Brown, J. Levine, and T. Mason, LEX and YACC, O?Reilly Media, 1992.

Online Resources: https://drive.google.com/file/d/19i8gYQD2xDzf8nUCxdqp7czFLhaDrVFp/view?usp=sharing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	3	3		3	3				3	3		3
CO1												
	3	2		3	3						2	2
CO2												
	3	2		3	3				3	2		3
CO3												

CO-PO Mapping:

	3	2	1	2	2		2	2	2
CO4									

3: Strong correlation2: Medium correlation

1: Weak correlation

University of Engineering and Management

Institute of Engineering & Management, Salt Lake Campus

Institute of Engineering & Management, New Town Campus

University of Engineering & Management, Jaipur

Department of Computer Science

B.Tech in CSE (AI & ML)

DETAILED SYLLABUS

Course Code - PECCS701D Course Title - Computer Vision Credit – 3 Category – Professional Elective Semester – VII L:T:P:S – 3:0:0:0 Prerequisites - Familiarity with Python programming, including NumPy, OpenCV basics, and linear algebra fundamentals.

Course Outcomes:

CO1	Understand and apply basic image processing techniques such as filtering, geometric transformations, and histogram operations.
CO2	Implement and evaluate feature detection and matching techniques for object recognition and image registration.
CO3	Apply segmentation algorithms and contour analysis methods for object extraction and shape analysis in images.
CO4	Design and train convolutional neural networks (CNNs) for image classification tasks and apply object detection models such as YOLO/SSD.
CO5	Demonstrate practical skills in using popular computer vision libraries (OpenCV, Keras, TensorFlow) to develop end-to-end vision pipelines.

Study Material	<u>Coursera</u>	<u>NPTEL</u>	Linkedin Learning	Infosys Springboard 5G
----------------	-----------------	--------------	-------------------	------------------------

Module No	Торіс	Sub Topic	Mapping with Industry and International Academia	Contact Hours	Assignment Question Mapped with the Module	Reference Textbooks
--------------	-------	-----------	--	------------------	--	------------------------

1	Image Processing Fundament als	Introduction to Computer Vision Image Representation: Grayscale, RGB, Binary Basic Image Processing Operations: Filtering, Blurring, Sharpening Geometric Transformations	NPTEL: Fundamentals of Digital Image Processing: https://onlinecourses.npte l.ac.in/noc22_ee116/previ ew?utm_source=chatgpt. com International Academia: (MIT OCW) Computational Photography https://www.youtube.co m/playlist?list=PLU14u3c NGP61pwA6paIRZ30q1	9	 1.Implement a Python program to apply Gaussian blur, median filter, and sharpening on an image. Compare the results. 2. What is the difference between image blurring and sharpening? Explain with suitable filters. 	Text Book: Chapter 1 Page 1-44
		: Scaling, Rotation, Translation Image Histograms and Histogram Equalization	sjLE8b6c <i>Industry Mapping:</i> Image Processing, Robotic Vision, AR/VR			

2:	Feature Detection and Matching	Edge Detection: Sobel, Canny Corner Detection: Harris Corner Detector Keypoint Detector and Description: SIFT, SURF, ORB Feature Matching: Brute-Force and FLANN based matcher	International Academia: (MIT OpenCV tutorials) https://fab.cba.mit.edu/cl asses/865.15/people/des mond.lim/project-06.html Industry Mapping: Autonomous Vehicle, AR/VR, Robotics	9	 Apply Canny edge detection on an image and visualize the edges. 2. Detects corners in an image using the Harris Corner Detector. 	Text Book 3: Chapter 4
3	Image Segmentati on and	Image Thresholding:	NPTEL	9	1.	Text Book 1:

	Contour Analysis	Global, Adaptive Contour Detection and Analysis	(Computer Vision) <u>https://onlinecourses.npte</u> <u>l.ac.in/noc21_cs101/previ</u> <u>ew?utm_source=chatgpt.</u> <u>com</u>		Perform adaptive thresholding on an image with uneven illumination.	Chapter 10
		Morphological Operations Image Segmentation: Watershed, GrabCut	<i>Industry Mapping:</i> Used in biomedical imaging, satellite image analysis, surveillance		2. Detect contours in an image and calculate area, perimeter, and bounding box for each contour.	
4	Deep Learning for Computer Vision	Introduction to Convolutional Neural Networks (CNNs) CNN Architectures: LeNet, AlexNet, VGG	NPTEL (Deep Learning)	9	 Build and train a simple CNN for CIFAR-10 or MNIST image classification. Q2. Apply transfer learning using a pretrained VGG16 	Text Book 2: Chapter 1 - 4

Image Classification using CNNs	https://onlinecourses.npte <u>l.ac.in/noc21_cs101/previ</u> <u>ew?utm_source=chatgpt.</u> <u>com</u>	model to classify custom image dataset (flowers, animals, etc.).	
Object Detection: YOLO, SSD basics	Industry Mapping:		
Transfer Learning for Vision Tasks	Essential for ML Engineer, AI Researcher, and Data Scientist roles		

- 1. "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods, Pearson
- 2. Deep Learning for Computer Vision" by Rajalingappaa Shanmugamani
- 3. Computer Vision: Algorithms and Applications" by Richard Szeliski

Reference books:

1. "Learning OpenCV 4" by Gary Bradski and Adrian

2. Programming Computer Vision with Python" by Jan Erik Solem

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	2	-	-	2
CO3	3	2	3	2	-	-	-	-	-	-	-	2
CO4	3	3	3	3	3	-	-	-	2	-	2	3

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

DETAILED SYLLABUS

Course Code- PECCS701L Course Title – Advanced Deep Learning Credit – 3 Category – Professional Elective Course Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic understanding of Machine Learning and Neural Networks

CO1	Explain the fundamentals of concepts of deep learning.
CO2	Analyse the dynamics of deep learning networks.
CO3	Develop Deep Learning based solutions for modern problems.
CO4	Conduct advanced research and analysis on various frontiers of deep learning.

Study Material	Coursera	NPTEL	Linkedin Learning	Infosys Springboard 5G
<u>Link</u>				

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Introduction to Artificial Neural Networks	Perceptron, Activation & Loss Functions, SGD, MLP, Backpropagation, Autoencoders	Coursera (Deep Learning <u>https://www.course</u> <u>ra.org/specializatio</u> <u>ns/deep-learning</u> Specialization), NPTEL <u>https://onlinecours</u> <u>es.nptel.ac.in/noc2</u> <u>1 cs76/preview</u>	9	Implementing Perceptron, MLP, Autoencoder	Goodfellow et al. Ch 6, 7
2	Controlling Neural Networks	Momentum, Adaptive Learning Rates, Hyperparameter Tuning, Regularization, Gradient Issues	Coursera, NPTEL	7	Experimenting with Adam, RMSProp, Dropout	Goodfellow et al. Ch 8

3	Deep Learning Architectures	CNN, RNN, Encoder- Decoder, GANs, Transformers	LinkedIn Learning, Stanford NLP Lectures <u>https://web.stanfor</u> <u>d.edu/class/cs224n/</u>	7	CNN on CIFAR-10, LSTM for Text, GAN for MNIST	Goodfellow et al. Ch 9, 10
4	Deep Learning Models	AlexNet, VGGNet, Inception, ResNet, SegNet, U-Net, LSTM, GRU, GAN, CycleGAN, BERT, GPT	Academic papers, OpenAI GPT, Google BERT, PyTorch Docs <u>https://www.course</u> <u>ra.org/learn/advan</u> <u>ced-deep-learning-</u> <u>with-</u> <u>pytorch?utm_sour</u> <u>ce=chatgpt.com</u>	7	Fine-tune VGG, U-Net segmentation, text gen using GPT	Reference Papers, Goodfellow et al.
5	Advanced Techniques	Transfer Learning, Reinforcement Learning, Evolutionary Networks, Federated & Active Learning, XAI	InfosysSpringboard,Google AI Blog,OpenAI Gym https://biods220.sta nford.edu/lectures/ lecture14.pdf https://www.infosy s.com/about/spring board.html	8	Transfer Learning for Flowers, RL with Gym, XAI tools	Campesato, Online Papers

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville
- 2. Artificial Intelligence, Machine Learning and Deep Learning by Oswald Campesato

Reference books:

Selected research papers on GANs, Transformers, Federated Learning

https://arxiv.org/pdf/2106.11342

Online Resources:

- Coursera Deep Learning Specialization (Andrew Ng)
- Stanford CS231n, CS224n
- PyTorch and TensorFlow Documentation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	2	3	3	-	-	-	-	-	-	-	-	-
CO3	-	2	3	3	2	-	-	1	-	-	-	-
CO4	-	-	3	3	-	-	-	-	-	3	-	-

CO-PO Mapping:

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in CSE (AI & ML)

DETAILED SYLLABUS

Course Code- OECCS701A Course Title – Enterprise Systems Category – Open Elective Course Credit – 3 Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic knowledge of Business, Finance & Accounting, Awareness on Business Environment

CO1	Understand Enterprise systems models.
	onderstand Enterprise systems models.

CO2	Understand Enterprise Software architecture.
CO3	Design and implement ERP models.
CO4	Implement interactive networks and applications.
CO5	Develop models for ERP for large projects.

Module No.	Topic Introduction to	Sub-topics Features, capabilities	Mapping with Industry and International Academia International	Lecture Hours 6	Corresponding Lab Assignments	Textbook Mapping Textbook-1
	Enterprise systems concepts	and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse. Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales & Distribution	Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final BTECH LSCM.pdf) Industry Mapping:		Familiarization with ERPNext - open-source alternative to SAP. 2. Familiarization with Odoo ERP software. 3. Familiarization with anyLogistix software.	Chapters: 1, 2 and 3 Textbook-2 Chapters: 1-4, 11 and part V.

			ERPNext, anyLogistix, Odoo (GitHub - frappe/erpnext: Free and Open Source Enterprise Resource Planning (ERP),Case study – anyLogistix, Open Source ERP and CRM Odoo)			
2	Enterprise Resource Planning (ERP)Architecture and Technologies	Service Oriented Architecture (SOA): Principles of loose coupling, encapsulation, Interoperability. Decision Support System: On-Line Analytical Processing, Electronic Data Exchange, Customer Relationship Management (CRM), Supplier Relationship Management (SRM),	International Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final BTECH LSCM.pdf) Industry Mapping:	8	 Create a model of customer relationship management and business intelligence systems for catalogue and online retailers. Create a model of Supplier Relationship Management for Healthcare system. 	Textbook-1 Chapter: 3 Textbook-2 Chapter: part II.

3	ERP Software Architecture and	Introduction to MVC, MVC method of software development in a 3-tier	ERPNext, anyLogistix, Odoo (<u>GitHub -</u> <u>frappe/erpnext:</u> <u>Free and Open</u> <u>Source</u> <u>Enterprise</u> <u>Resource</u> <u>Planning</u> (ERP),Case <u>study -</u> anyLogistix, <u>Open Source</u> <u>ERP and CRM </u> Odoo)	10	1. Create ASP.NET MVC Application	Text Book-3
	Technologies	environment, Microsoft .NET framework, PHP, Ruby on Rails, JavaScript, Ajax and Overview of SAP and Oracle Applications			Application using Visual Studio. 2. Create JSP application using MVC framework	Chapters:1 - 6. Coursera course: ASP.NET Core MVC [.NET 8] - The Complete Guide Specialization https://www.co ursera.org/spe cializations/pa ckt-asp-net- core-mvc-net-

4	ERP Network	Introduction to MPLS,	International	10	1. Configure and	<u>8-the-</u> <u>complete-guide</u> Text Book-4
	Architecture	Virtual Private Networks (VPN), Storage area networks, Storage units, Back-up strategies, Local Area Network (LAN) technologies and products, Data Centres. Firewalls, Network monitoring and enforcement of policies, ERP Security Issues, Authentication, Authorisation, Access control, Roles, single- sign on, Directory servers, Audit trails, Digital signatures, Encryption, review of IPSec, SSL.	Academia: (1.264J Lecture <u>37 Notes:</u> Networks: Enterprise, VPN, MPLS. Course summary, Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final BTECH LSCM.pdf) Industry Mapping: ERPNext, anyLogistix, Odoo (GitHub - frappe/er		 1. Configure and test a VPN connection. 2. Configure Firewall in Windows/Linux OS. 3. Configure an MPLS VPN in Cisco Packet Tracer. 	Chapters: 1-12. Enterprise Network Infrastructure : Coursera course <u>https://www.co</u> <u>ursera.org/lear</u> <u>n/packt-</u> <u>enterprise-</u> <u>network-</u> <u>infrastructure-</u> <u>pbclr?msockid</u> <u>=3e887050530</u> <u>967811ce4656</u> <u>152bb66d3</u>

			pnext: Free and Open Source Enterpris e Resource Planning (ERP),Ca se study – anyLogisti x, Open Source ERP and CRM Odoo)			
5	Trends in ERP	Enterprise Application Integration (EAI), ERP and E- Commerce, ERP and Internet, Future Directions in ERP	International Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final	6	Design with the help of CASE tools to aid ERP Software acquisition process - Case study	Text Book-1 Chapter 11

BTECH	
LSCM.pdf)	
Industry	
Mapping:	
ERPNext,	
anyLogistix,	
Odoo	
(<u>GitHub -</u>	
<u>frappe/erpnext:</u>	
<u>Free and Open</u>	
<u>Source Enterprise</u>	
<u>Resource Planning</u>	
<u>(ERP)</u> ,Case study –	
anyLogistix, Open	
Source ERP and	
<u>CRM Odoo</u>)	

- 1. Alexis Leon, Enterprise Resource Planning, 2020,4th Edition, Tata McGraw Hill.
- 2. Alexis Leon, ERP Demystified, McGrawhill education.
- 3. Simone Chiaretta, Keyvan Nayyeri, Beginning ASP.NET MVC 1.0, Wrox Press.

4. A Practical Introduction to Enterprise Network and Security Management, Bongsik Shin, CRC Press Taylor & Francis Group. **Reference books:**

- 1. The Age of Metapreneurship: A Journey into the Future of Entrepreneurship Design of Enterprise Systems: Theory, Architecture, and Methods, Ronald Giachetti.
- 2. Entrepreneurship: The Practice and Mindset Paperback, by Heidi M. Neck (Author), Christopher P. Neck (Author), Emma L. Murray.

3. ENTREPRENEURSHIP: The Art, Science, and Process for Success, Charles E. Bamford Associate Professor of Strategy & Entrepreneurship (Author), Garry D.Bruton Dr.

Online Resources:

Coursera course:

1. Enterprise Systems, Jason Chan, University of Minnesota.

LinkedIn course:

1. Enterprise Architecture Foundations, Dave Swersky.

	CO-I O Mapping.											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	-
CO2	3	2	1	1	-	-	-	-	-	-	-	-
CO3	3	2	2	2	2	-	-	-	-	-	-	-
CO4	3	2	2	2	2	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	2

CO-PO Mapping:

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in CSE (AI & ML)

DETAILED SYLLABUS

Course Code- OECCS701C Course Title – Entrepreneurship and Startups Credit – 3 Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic knowledge of Business, Finance & Accounting, Awareness on Business Environment

CO1	Remembering the basic concept of Entrepreneurship.
CO2	Understanding and applying different skills of Entrepreneurship.
CO3	Analyze various types of start-up ecosystems and strategies for implementing and its uses in the present market.

CO4	Understanding of trends, opportunities and financial evaluation of Start Up Opportunities and Create new concepts to overcome Modern Entrepreneurship challenges.

Study Material	Coursera	NPTEL	LinkedIn learning.	

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Introduction to Entrepreneurship	Meaning and concept of entrepreneurship, the history of entrepreneurship development, role of entrepreneurship in economic development, Myths about entrepreneurs, agencies in entrepreneurship management future of entrepreneurship types of entrepreneurs	International Academia: (MIT Open Courseware): <u>https://ocw.mit.edu/</u> <u>collections/entrepr</u> <u>eneurship/</u> AICTE-prescribed syllabus: https://www.aicte = india.org/sites/def ault/files/Awarene	8		Textbook-1 Chapters: 1 to 8 Textbook-2 Chapters: page no. 1 to 192

			ss%20Workshop_ Vocational.pdf Industry Mapping: NA		
2	The Entrepreneur	 Why to become entrepreneur, the skills/ traits required to be an entrepreneur, Creative and Design Thinking, the entrepreneurial decision process, skill gap analysis, and role models, mentors and support system, entrepreneurial success stories. Communication: Importance of communication, barriers and gateways to communication, listening to people, the power of talk, personal selling, risk taking & resilience, negotiation. 	International Academia: (MIT Open Courseware): <u>https://ocw.mit.edu/ collections/entrepr</u> eneurship/ AICTE-prescribed syllabus: https://www.aicte = india.org/sites/def ault/files/Awarene ss%20Workshop_ Vocational.pdf Industry Mapping: NA	8	Textbook-1 Chapters: 9, 17 Textbook-2 Chapters: page no. 193 to 354

3	Start-up Introduction	various form of business	International	14	NA	Textbook-1
		organization (sole proprietorship, partnership, corporations, Limited Liability,) Company mission, vision and strategy formulation.	Academia: (MIT Open Courseware): https://ocw.mit.e du/MIT <u>Courses</u> /entrepre neurship/ AICTE-prescribed syllabus: https://www.aicte = india.org/sites/def ault/files/Awarene ss%20Workshop_ Vocational.pdf			Chapters: 18 to 24 Textbook-2 Chapters: page no. 355 to 610
			Industry Mapping: NA			
4	Finance and Accounting concepts	Rate of Return Methods, Break even analysis, Financial statements, basic accounting concept	International Academia: (MIT Open Courseware):	6	NA	Textbook-1 Chapters: 25 to 29 Textbook-2 Chapters: 611

E-Cell: Meaning and concept of E-cells, advantages to join E-cell, significance of E-cell, various activities conducted by E-cell.	https://ocw.mit.edu /collections/entrepr eneurship/ AICTE-prescribed syllabus:		to 762
	https://www.aicte - india.org/sites/def ault/files/Awarene ss%20Workshop_ Vocational.pdf Industry Mapping: NA		

- 1. "Entrepreneurship Development and Business Ethics" by Mukherjee & Roy (Oxford University Press)
- 2. "Entrepreneurship Development and Business Ethics" by Desai V (Himalaya Publishing House) Reference books:
- 1. The Age of Metapreneurship: A Journey into the Future of Entrepreneurship Design of Enterprise Systems: Theory, Architecture, and Methods, Ronald Giachetti.
- 2. Entrepreneurship: The Practice and Mindset Paperback, by Heidi M. Neck (Author), Christopher P. Neck (Author), Emma L. Murray.
- 3. ENTREPRENEURSHIP: The Art, Science, and Process for Success, Charles E. Bamford Associate Professor of Strategy & Entrepreneurship (Author), Garry D.Bruton Dr.

Online Resources:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science B.Tech in CSE (AI & ML) DETAILED SYLLABUS

Course Code- ESP(CS)701 Course Title – Essential Studies for Professionals (CS) - VII Credit – 0.5 Category – Humanities & Social Sciences including Management course Semester – VII L:T:P:S – 2:0:0:0 Pre-requisite – Basic knowledge of Data Structures, Basics of Compiler, Operating systems and Computer network

CO1	To develop a detailed knowledge of compiler designs.
CO2	To learn all types of Data Base Management Systems' fundamentals.
CO3	To understand Operating Systems and its applications.
CO4	To use fundamentals of Computer networks and its methods.

Module No.	Торіс	Sub-topics	Mapping with Industry and	Lectu re	Textbook Mapping
110.			International Academia	Hour s	
1	Compiler Design	Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimization, Data flow analyses: constant propagation, likeness analysis, common sub expression elimination	International Academia: (MIT Open Courseware): AICTE-prescribed syllabus: Industry Mapping:	6	 G.K publishers GATE Computer Science Engineering, McGraw hill GATE 2020 Computer Science Engineering, Wiley GATE 2020 Computer Science Engineering
2	Databases	Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control	International Academia: (MIT Open Courseware): AICTE-prescribed syllabus: Industry Mapping:	12	 G.K publishers GATE Computer Science Engineering, McGraw hill GATE 2020 Computer Science Engineering, Wiley GATE 2020 Computer Science Engineering
3	Operating System	Processes, threads, inter-process communication, concurrency and synchronization, Deadlock, CPU scheduling. Memory management and virtual memory, File system. Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control.	International Academia: (MIT Open Courseware): AICTE-prescribed syllabus:	12	 G.K publishers GATE Computer Science Engineering, McGraw hill GATE 2020 Computer Science Engineering, Wiley GATE 2020 Computer Science Engineering

4	Computer Networks	Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi. Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit- switching; Data link	Industry Mapping: International Academia:	6	1. G.K publishers GATE Computer Science Engineering,
		layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email	(MIT Open Courseware): <i>AICTE-prescribed</i> syllabus: Industry Mapping:		2. McGraw hill GATE 2020 Computer Science Engineering, 3. Wiley GATE 2020 Computer Science Engineering

- 1. G.K publishers GATE Computer Science Engineering,
- 2. McGraw hill GATE 2020 Computer Science Engineering,
- 3. Wiley GATE 2020 Computer Science Engineering

Online Resources:

Module	Platform	Course Link		
Compiler Design	NPTEL	<u>Link</u>		
Compiler Design	Stanford	https://youtu.be/sm0QQO-WZIM		
Databases	NPTEL	Link		
Databases	Coursera (IBM)	Link		
Operating Systems	NPTEL	Link		
Operating Systems	Coursera (Google)	Link		
Computer Networks	NPTEL	Link		
Computer Networks	Coursera (Stanford)	Link		

CO-PO Mapping:

CO \ PO	PO1 (Enginee ring Knowled ge)	PO2 (Proble m Analysis)	n/Dev	(Invest	rn	(Engin eer & Society	t &	PO8		PO10 (Commu nication)	VIANAGA	ισησ
CO1	2	1	1	1	1	-	-	-	-	-	-	3
CO2	2	1	1	1	1	-	-	-	1	1	1	3
CO3	2	1	1	1	1	1	-	_	1	1	1	3
CO4	2	1	1	1	1	1	-	-	1	1	1	3

3: Strong correlation

2: Medium correlation