

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

COURSE STRUCTURE

Batch: 2022-2026

	Semester VII (Fourth Year) Curriculum							
Sl. No	Type of	Course Code	Course Name		Hours	per week		Credit Points
	course			Lecture	Tutorial	Practical	Sessional	
	Theory Papers							
1	Professional Core Course	PCCCS701	Compiler Design	3	0	0	0	3
2	Professional Elective Course	PECCS701	Elective-III	3	0	0	0	3
3	Open Elective Course	OECCS701	Open Elective-I	3	0	0	0	3

4	Humanities & Social Sciences including Management course	ESP(CS)701	Essential Studies for Professionals – VII (CS)	2	0	0	0	0.5
		lotal		 Practical D	U	U	U	9.5
1	Professional Core Course	PCCCS791	Compiler Design Labor atory	0	0	4	0	2
		Total		0	0	4	0	2
				Sessional Pa	apers			
1	Humanities & Social Sciences including Management course	SDP781	Skill Development for Professionals - VII	0	0	0	2	0.5
2	Innovative Project	PRJCS781	Project – II	0	0	12	0	6
3	Internship	SICS781	Summer Internship - I	0	0	0	0	4
		Total		0	0	12	2	10.5
	1		Manc	latory Requ	uirements	1	1	1
Sl. No	Type of course	Course Code	Course Name		Hours	s per week		Score/Credit/C ount

1	Co-	MAR	Mandatory	-	-	-	-	-
	curricular &		Additional					
	Extra		Requirements					
	Curricular		(Score)					
	Activities							
2	Honours	MOOCs	Massive Open	-	-	-	-	-
			Online Course					
			(Credit)					
3	Certification	IFC	Industry and	-	-	-	-	-
			Foreign					
			Certification					
			(Count)					
Total			11	0	16	2	22	

Offered Elective List

Category	Course Name	Course Code
Professional Elective - III	Ad-hoc and Sensor Network	PECCS701A
	Warehousing and Business Intelligence	PECCS701B
	Computer Vision	PECCS701D
Open Elective - I	Enterprise System	OECCS701A
	Economic Policies in India	OECCS701B

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code- PCCCS701 Course Title – Compiler Design Credit – 3 Category – Professional Core Course Semester – VII L:T:P:S – 3:0:2:0 Pre-requisite – Basic knowledge of Data Structures, Algorithms, Formal Language and Automata Theory

Course Outcomes:

CO1	1 Students will be able to learn the grammar specification for developing the lexical analyzer.				
CO2	Design a given pa	arser specification desig	n top-down and bottom-	up parsers.	
CO3	Develop syntax d	lirected translation sche	mes.		
CO4	Develop algorithms to generate code for a target machine.				
<u>Stu</u>	Study MaterialCourseraNPTELLinkedIn LearningInfosys Springboard				
	Lesson Plan				

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Overview of compilation & Lexical Analysis	The structure of a compiler and applications of compiler technology; Lexical analysis - The role of a lexical analyzer, specification of tokens, recognition of tokens, hand-written lexical analyzers, LEX, examples of LEX programs. Introduction to syntax analysis -Role of a parser, use of context-free grammars (CFG) in the specification of the syntax of	International Academia: <u>https://ocw.mit.edu</u> / <u>courses/6-004-</u> <u>computation-</u> <u>structures-spring-</u> <u>2017/pages/c11/</u> (MIT Open Courseware): AICTE-prescribed syllabus:	8	Write a program that takes a simple code snippet (e.g., a few lines of C or a pseudo- language) as input and identifies all the tokens present, classifying them into categories like keywords, identifiers, operators,	Textbook-1 Chapters: 1 to 3 Page No. – 1 to 158

· · · · · · · · · · · · · · · · · · ·		I		_
	programming languages,	<u>https://drive.google</u>	literals (integer,	
	techniques for writing grammars	.com/file/d/11CBes	float, string), and	
	for programming languages	IrHOERE-	punctuation. The	
	(removal left recursion, etc.), non-	XHDJSNsIHIRON	output should be	
	context-free constructs in	mt_tYX/view?usp=	a list of (token,	
	programming	sharing	token_type)	
	languages, parse trees and	Sharing	pairs.	
	ambiguity, examples of	Industry Mapping:		
	programming language grammars		Implement an	
		https://www.course	algorithm that	
		<u>ra.org/programs/ie</u>	takes a given	
		<u>m-faculty-</u>	regular	
		learning-program-	expression (e.g.,	
		rtyr7/projects/goog	(a b)*c) and	
		lecloud-form-	constructs its	
		parsing-with-	equivalent Non-	
		document-ai-	deterministic	
		nython_zdlse	Finite	
		pymon-Luise	Automaton	
			(NFA). You can	
			represent the	
			NFA using	
			adjacency lists or	
			a similar data	
			structure.	
			Write a program	
			that takes an	
			NFA	
			(represented as	
			in the previous	
			avaction) as	

		input and	
		converts it into	
		an equivalent	
		Deterministic	
		Finite	
		Automaton	
		(DFA) using the	
		subset	
		construction	
		algorithm.	
		Design a simple	
		programming	
		language with a	
		few keywords.	
		operators, and	
		data types. Then,	
		implement a	
		handwritten	
		lexical analyzer	
		(without using	
		tools like LEX)	
		in a language	
		like Python or	
		Java that can	
		tokenize	
		programs written	
		in this small	
		language.	
		Write a LEX	
		program (or	

		Flex, its open-	
		source	
		counterpart) that	
		can identify and	
		classify the	
		following tokens	
		in an input file:	
		keywords (if,	
		else, while, int),	
		identifiers	
		(starting with a	
		letter, followed	
		by letters or	
		digits), integer	
		literals, and basic	
		arithmetic	
		operators (+, -, *,	
		/).	
		Extend the LEX	
		program from	
		the previous	
		question to	
		ignore C-style	
		(/* */) and	
		C++-style (//)	
		comments, as	
		well as	
		whitespace	
		(spaces, tabs,	
		newlines). The	
		output should	

		only contain the identified	
		taliana	
		lokens.	
		Circum a compared	
		Given a context-	
		Iree grammar for	
		a simple	
		arithmetic	
		expression	
		language (e.g.,	
		with addition,	
		subtraction,	
		multiplication,	
		division, and	
		parentheses),	
		write a program	
		that can:	
		Determine if the	
		grammar is	
		ambiguous.	
		(Hint: You	
		might try to	
		derive the same	
		string in two	
		different ways).	
		•	
		Draw the parse	
		tree for a given	
		valid expression	

		according to the	
		grammar.	
		Write a program	
		that takes a	
		context-free	
		grammar as	
		input and	
		removes any	
		immediate left	
		recursion present	
		in its production	
		rules. The output	
		should be the	
		modified	
		grammar without	
		left recursion.	
		Choose either a	
		top-down	
		parsing	
		technique (like	
		recursive	
		descent) or a	
		bottom-up	
		technique (like	
		shift-reduce) and	
		implement a	
		parser for a small	
		subset of a	
		programming	

language based
on a given
context-free
grammar. The
parser should
take a sequence
of tokens as
input and output
whether the
input is
syntactically
valid according
to the grammar.
For a top-down
parser, you
might need to
handle LL(1)
conditions.
Research and
prepare a report
or a short
presentation
explaining some
common non-
context-free
constructs found
in programming
languages (e.g.,
declaration
before use, type
checking

				consistency). Provide examples of how these constructs cannot be easily handled by standard context- free grammars.	
2 Top-dow parsing	 FIRST & FOLLOW sets, LL(1) conditions, predictive parsing, recursive descent parsing, error recovery. LR-parsing - Handle pruning, shift-reduce parsing, viable prefixes, valid items, LR(0) automaton, LR-parsing algorithm, SLR(1), LR(1), and LALR(1) parsing. YACC, error recovery with YACC and examples of YACC specifications. Syntax-directed definitions (attribute grammars)-Synthesized and inherited attributes, examples of SDDs, evaluation orders for attributes of an SDD, dependency graphs. S-attributed and L- attributed SDDs and their implementation using LR-parsers and recursive 	Academia: Academia: https://ocw.mit.edu /courses/6-004- computation- structures-spring- 2017/pages/c11/ (MIT Open Courseware): AICTE-prescribed syllabus: https://drive.google .com/file/d/11CBes IrHOERE- XHDJSNsIHIRON mt tYX/view?usp= sharing Industry Mapping:	10	that takes a context-free grammar (CFG) as input and computes the FIRST and FOLLOW sets for all non- terminals in the grammar. The output should clearly display the grammar and the calculated FIRST and FOLLOW sets. Test your program with various grammars, including those with epsilon productions and	Chapters: 4, 5 Page No.: 159 - 341

descent parsers respectively.	https://www.course ra.org/programs/ie m-faculty- learning-program- rtyr7/projects/goog lecloud-form- parsing-with- document-ai- python-zdlse	left recursion. Develop a program that takes a CFG and the computed FIRST and FOLLOW sets as input. The program should then check if the given grammar
	learning-program- rtyr7/projects/goog lecloud-form- parsing-with- document-ai- python-zdlse	program that takes a CFG and the computed FIRST and FOLLOW sets as input. The program should then check if the given grammar satisfies the LL(1) conditions. The output should indicate whether the grammar is LL(1) or not, and if not, identify the violating productions. Implement an algorithm that takes an LL(1) grammar (or one that can be made LL(1) by left-
		tactoring) and constructs its

		predictive	
		parsing table.	
		The output	
		should be a clear	
		representation of	
		the parsing	
		table.	
		Write a program	
		that implements	
		a non-recursive	
		predictive parser	
		using the	
		parsing table	
		generated in the	
		previous	
		question The	
		parser should	
		take a string as	
		input and	
		determine if it is	
		accepted by the	
		grammar The	
		output should	
		show the	
		sequence of	
		moves made by	
		the parser	
		(stack, input	
		action) Include	
		hasic error	
		detection for	

invalid input
strings.
Design a simple
context-free
grammar (e.g.,
for arithmetic
expressions with
basic operators).
Implement a
recursive
descent parser
for this grammar
in your chosen
programming
language. The
parser should
take an input
string and output
whether it is a
valid sentence of
the grammar.
Write a program
that simulates
the actions of a
shift-reduce
parser for a
given grammar
and input string.
The program
should output

· · · · · · · · · · · · · · · · · · ·
the sequence of
stack contents,
input remaining,
and the action
(shift or reduce)
performed at
each step.
Include the
detection of
acceptance and
error states.
Implement an
algorithm that
takes a context-
free grammar
and constructs
its LR(0)
automaton (the
collection of
LR(0) items and
the transitions
between them).
The output
should clearly
represent the
states and
transitions of the
automaton.
Extend the
LR(0)

· · · · · · · · · · · · · · · · · · ·
automaton
construction to
generate the
SLR(1) parsing
table. Your
program should
take a grammar
and the LR(0)
automaton as
input and
produce the
SLR(1) parsing
table (action and
goto parts).
Handle potential
conflicts and
indicate if the
grammar is
SLR(1).
Write a YACC
(or Bison)
specification for
a simple
programming
language
construct (e.g.,
assignment
statements,
simple
arithmetic
expressions, or a

basic	
conditional	
statement).	
Compile and test	
your YACC	
specification	
with valid and	
invalid input.	
Observe how	
YACC handles	
the parsing and	
reports syntax	
errors.	
Consider a	
simple syntax-	
directed	
definition	
(SDD) for	
calculating the	
value of	
arithmetic	
expressions.	
Implement a	
program that	
takes a parse	
tree (you can	
manually	
construct simple	
parse trees for	
testing) and	
evaluates the	

				attributes according to the SDD rules. Demonstrate the evaluation process for both synthesized and inherited attributes (if applicable in your chosen SDD).	
3	Semantic analysis	Symbol tables and their data structures. Representation of "scope". Semantic analysis of expressions, assignment, and control-flow statements, declarations of variables and functions, function calls, etc., using S- and L-attributed SDDs (treatment of arrays and structures included). Semantic error recovery Intermediate code generation - Different intermediate representations –quadruples, triples, trees, flow graphs, SSA forms, and their uses. Translation of expressions (including array references with subscripts) and	International Academia: https://ocw.mit.edu /courses/6-004- computation- structures-spring- 2017/pages/c11/ (MIT Open Courseware): AICTE-prescribed syllabus: https://drive.google .com/file/d/11CBes IrHOERE- XHDJSNsIHIRON	Create functions to insert, lookup, and delete entries in the symbol table. Each entry should store at least the variable name and its data type. Demonstrate the insertion and retrieval of symbol information for a small set of declared variables. Modify the	Textbook-1 Chapters: 5, 6 Page No.: 279 to 388

assignment statements. Translation of control-flow statements – it- then- else, while-do, and switch. Short-circuit code and control-flow translation of Boolean expressions. Back patching. Examples to illustrate intermediate code generation for all constructs	<u>mt tYX/view?usp=</u> <u>sharing</u> Industry Mapping: <u>https://www.course</u> <u>ra.org/programs/ie</u> <u>m-faculty-</u> <u>learning-program-</u> <u>rtyr7/projects/goog</u> <u>lecloud-form-</u> <u>parsing-with-</u> <u>document-ai-</u> <u>python-zdlse</u>	symbol table implementation to support the concept of scope. Implement a mechanism to enter and exit scopes. Demonstrate how variables declared in different scopes are managed and how name resolution works (e.g., accessing a variable in an outer scope).Write a program that takes simple expressions (e.g., $a + b, x < y$) as input. Perform type
		outer scope). Write a program that takes simple expressions (e.g., a + b, x < y) as input. Perform type checking to ensure that the operands are compatible. Report any type errors (e.g.,

l I			adding on	
			adding an	
			integer to a	
			boolean).	
			Assume	
			variables have	
			been previously	
			declared and	
			their types are	
			available in the	
			symbol table	
			5,111001 (doi c .	
			Write a program	
			that takes	
			assignment	
			statements (e.g.	
			statements (e.g., $y = y \pm 5$) of	
			x - y + 3 as	
			input. Perform	
			type	
			compatibility	
			checks between	
			the left-hand	
			side variable and	
			the right-hand	
			side expression.	
			Handle implicit	
			type conversions	
			(if applicable in	
			your chosen	
			scope) and	
			report type	
			errors	
			U 11015.	

		Write a program	
		that takes if-	
		then-else	
		statements as	
		input. Ensure	
		that the	
		condition	
		expression is of	
		a boolean type.	
		Demonstrate the	
		semantic	
		analysis process.	
		5 1	
		Write a program	
		that processes	
		variable and	
		function	
		declarations. For	
		variables, store	
		their names and	
		types in the	
		symbol table.	
		For functions,	
		store their	
		names, return	
		types, and the	
		types and	
		number of their	
		parameters.	
		Detect and	
		report	
		redeclaration	

		errors.	
		Write a program	
		that takes	
		function calls as	
		input. Check if	
		the function	
		being called has	
		been declared, if	
		the number of	
		arguments	
		matches the	
		function	
		definition, and if	
		the types of the	
		actual	
		arguments are	
		compatible with	
		the formal	
		parameters.	
		Report any	
		errors.	
		White a new second	
		write a program	
		inal takes	
		input and	
		generates their	
		corresponding	
		quadruple	
		representation	
		representation.	

		Each quadruple
		should have the
		format
		(operator,
		operand1,
		operand2,
		result). Handle
		operator
		precedence and
		associativity
		appropriately.
		Write a program
		that takes
		assignment
		statements and
		while-do loops
		as input and
		generates their
		corresponding
		triple
		representation.
		Each triple
		should have the
		format
		(operator,
		operand1,
		operand2). For
		control flow,
		you'll need to
		represent the
		conditions and

					jump targets using triple indices. Take a simple sequence of assignments and arithmetic operations with variable reassignments. Convert this code into SSA form by introducing new versions of variables where necessary. Demonstrate the key property of SSA: each variable is assigned a value only once.	
4	Run-time environmen ts	Stack allocation of space and activation records. Access to non-local data on the stack in the case of procedures with and without nesting of procedures. Introduction to machine code generation and optimization- Simple	International Academia: <u>https://ocw.mit.edu</u> /courses/6-004- computation- structures-spring- 2017/pages/c11/	8	Design the layout of an activation record for a function in a hypothetical programming language. Include space for parameters,	Textbook-1 Chapters: 7, 8, 9, 10 Page No.: 389 to 751

	1	
machine code generation,	(MIT Open	local variables,
examples of machine-independent	Courseware):	the return
code optimizations.	AICTE-prescribed syllabus: <u>https://drive.google</u> .com/file/d/11CBes IrHOERE- XHDJSNsIHIRON mt tYX/view?usp= sharing	address, and the control link (dynamic link). Illustrate how this layout would be instantiated for a simple function call with a few parameters and
	Industry Mapping:	iocal variables.
	https://www.course ra.org/programs/ie m-faculty- learning-program- rtyr7/projects/goog lecloud-form- parsing-with- document-ai- python-zdlse	Write a program (in any language) to simulate the stack during a sequence of simple function calls (without nesting). The program should track the stack pointer and the contents of each activation record pushed onto and popped from the stack. Demonstrate

	this with at least
	three sequential
	function calls.
	Write a small
	program with a
	function that
	declares and
	uses local
	variables. Then,
	manually trace
	the execution,
	showing how
	the activation
	record for this
	function is
	created on the
	stack and how
	the local
	variables are
	accessed
	(relative to the
	frame pointer).
	Implement a
	function that
	takes parameters
	passed by value.
	Simulate the
	stack during a
	call to this
	function,

	showing how
	the parameter
	values are
	copied into the
	activation
	record.
	Implement a
	function that
	takes parameters
	passed by
	reference (if
	your chosen
	simulation
	language
	allows).
	Simulate the
	stack during a
	call, illustrating
	how the
	addresses of the
	actual
	arguments are
	stored in the
	activation
	record.
	Extend the stack
	simulation from
	question 2 to
	include nested
	function calls.

Demonstrate
how the control
links in the
activation
records are used
to maintain the
dynamic chain
and enable the
correct return
from nested
calls. Include at
least one level
of nesting.
Consider a
program with
nested
procedures and
static scoping.
Implement a
scenario where
an inner
procedure needs
to access a
variable
declared in an
enclosing
procedure.
Manually trace
the stack and
demonstrate
how the static

		link (access	
		link) in the	
		activation record	
		of the inner	
		procedure would	
		be used to find	
		the non-local	
		variable in the	
		activation record	
		of the outer	
		procedure.	
		1	
		Choose a verv	
		simple	
		arithmetic	
		expression (e.g.,	
		a = b + c * 2).	
		Design a	
		sequence of	
		hypothetical	
		machine code	
		instructions	
		(e.g., using a	
		simplified	
		assembly-like	
		language with	
		instructions like	
		LOAD, STORE.	
		ADD, MUL) to	
		evaluate this	
		expression.	
		Assume	

	variables a, b,
	and c are stored
	in memory
	locations.
	Take a code
	snippet with
	constant
	expressions
	(e.g., $x = 5 + 3 *$
	2; $y = z + 8$).
	Apply the
	constant folding
	optimization
	manually to
	simplify the
	code. Show the
	original and
	optimized code
	snippets.
	Write a small
	code segment
	that includes a
	variable that is
	assigned a value
	but never
	subsequently
	used. Identify
	this dead code
	and demonstrate
	how it can be

		eliminated to	
		optimize the	
		code. Show the	
		original and	
		optimized code	
		snippets.	

Textbooks:

1. Compilers: Principles, Techniques, and Tools, by A.V. Aho, Monica Lam, Ravi Sethi, and J.D. Ullman, (2nd ed.), Addison-Wesley, 2007 (main text book, referred to as ALSU in lab assignments).

Reference books:

- 1. K.C. Louden, Compiler Construction: Principles and Practice, Cengage Learning,
- 2. D. Brown, J. Levine, and T. Mason, LEX and YACC, O?Reilly Media, 1992.

Online Resources: https://drive.google.com/file/d/19i8gYQD2xDzf8nUCxdqp7czFLhaDrVFp/view?usp=sharing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	3	3		3	3				3	3		3
CO1												
	3	2		3	3						2	2
CO2												

CO-PO Mapping:

	3	2		3	3		3	2	3
CO3									
	3	2	1	2	2		2	2	2
CO4									

3: Strong correlation

2: Medium correlation

1: Weak correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code- PECCS701A Course Title – Ad-hoc and Sensor Networks Credit – 3 Category – Professional Elective Course Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic knowledge of Computer Networks & Operating System

Course Outcomes:

CO	1	Students will able to understand the principles, architecture and challenges of Ad hoc and Wireless Sensor
		Networks.

CO2	Students will able to analyze and evaluate the performance of various energy-efficient routing protocols such					
	as AODV, DSDV, PAMAS, LEACH & MAC etc. used in these networks.					
CO3	Students will able to understand the transport layer and all possible security concerns along with processes					
	in Ad hoc and Sensor Networks.					
CO4	Students will able to learn various encryption-decryption methods such as DES, AES, RSA, Diffie-Hellman					
	etc. along with its applicability in real scenario. Also able to understand the security features and trust					
	policies in designing an Operating System.					

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lectu re Hour s	Textbook Mapping
1	AD HOC	Elements & issues of Ad hoc	International Academia:	6	Textbook-2
	NETWORKS – INTRODUCTI ON AND ROUTING PROTOCOLS	Networks, Commercial applications of Ad hoc Network, Ad hoc wireless Internet, Issues in Designing a Routing Protocol for Ad Hoc Networks, Classifications of Routing Protocols, Table Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV), On– Demand Routing protocols –Ad hoc On–Demand Distance Vector Routing (AODV).	(MIT Open Courseware): <u>https://ocw.mit.edu/course</u> <u>s/6-452-principles-of-</u> <u>wireless-communications-</u> <u>spring-2006/</u> AICTE-prescribed <u>syllabus:</u> <u>https://www.aicte-</u> <u>india.org/sites/default/files</u> <u>/Model_Curriculum/AICT</u>		Chapters: 1, 2 and 3. *5G Networks fundamentals* (<u>https://www.cou</u> <u>rsera.org/learn/5</u> <u>g-network-</u> <u>fundamentals</u>)

			E%20-%20UG%20CSE.p df Industry Mapping: Wireshark, Packet Tracer, OPNET, NS3		
2	WIRELESS SENSOR NETWORKS – INTRODUCTI ON & ARCHITECTU RES	Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks (WSNs), WSNs' applications, Single-Node Architecture – Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture – Sensor Network Scenarios	International Academia:(MIT Open Courseware):https://ocw.mit.edu/courses/mas-863-how-to-make-almost-anything-fall-2002/AICTE-prescribedsyllabus:https://www.aicte-india.org/sites/default/files/Model_Curriculum/AICTE%20-%20UG%20CSE.pdfIndustry Mapping:Wireshark, Packet Tracer,OPNET, NS3	6	Textbook-2 Chapters: 1, 2 and 3.
3	PROTOCOLS IN WSNs	MAC Protocols for WSNs, Low Duty Cycle Protocols and Wakeup Concepts – S-MAC, The Mediation Device Protocol, Contention based protocols – PAMAS, Schedule based protocols – LEACH, IEEE 802.15.4 MAC protocol, Routing Protocols, Energy Efficient Routing, Challenges and Issues in Transport layer protocol.	International Academia: (MIT Open Courseware): https://ocw.mit.edu/course s/16-36-communication- systems-engineering- spring-2009/ AICTE-prescribed syllabus: https://www.aicte- india.org/sites/default/files /Model_Curriculum/AICT E%20-%20UG%20CSE.p df Industry Mapping: Wireshark, Packet Tracer, OPNET, NS3	4	Textbook-2 Chapters: 4 and 5.
---	-------------------------------	--	---	---	---
4	SENSOR NETWORK SECURITY	Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Layer wise attacks in wireless sensor networks, possible solutions for jamming, tampering, black hole attack, flooding attack. Key Distribution and Management, Secure Routing – SPINS, reliability requirements in sensor networks.	International Academia: (MIT Open Courseware): <u>https://ocw.mit.edu/course</u> <u>s/6-857-network-and-</u> <u>computer-security-spring-</u> <u>2014/</u> AICTE-prescribed syllabus:	6	Textbook-1 Chapters: 25 to 29 Textbook-2 Chapters: 611 to 762

			https://www.aicte- india.org/sites/default/files /Model_Curriculum/AICT E%20-%20UG%20CSE.p df Industry Mapping: Wireshark, Packet Tracer, OPNET, NS3		
5	SECURITY IN COMPUTING ENVIRONME NT	Need for Security, Security Attack, Security Services, Information Security, Methods of Protection. Terminologies used in Cryptography, Substitution Techniques, and Transposition Techniques. Encryption and Decryption: Characteristics of Good Encryption Technique, Properties of Trustworthy Encryption Systems, Types of Encryption Systems, Confusion and Diffusion, Cryptanalysis.	International Academia: (MIT Open Courseware): https://ocw.mit.edu/course s/6-857-network-and- computer-security-spring- 2014/ AICTE-prescribed syllabus: https://www.aicte- india.org/sites/default/files /Model_Curriculum/AICT E%20-%20UG%20CSE.p df Industry Mapping: Wireshark, Packet Tracer, OPNET, NS3	8	Textbook-1 Chapters: 3 to 4, 6, 9-11
6	SYMMETRIC KEY ENCRYPTION	Data Encryption Standard (DES), Double and Triple DES, Security of the DES, Advanced Encryption	<i>International Academia:</i> (MIT Open Courseware):	8	Textbook-1 Chapters: 3 to 4, 6,
		Standard (AES) Algorithm, DES and	· · · /		• • • •

		AES Comparison. Public Key Encryption: Characteristics of Public Key System, RSA Technique, Key Exchange, Diffie-Hellman Scheme, Cryptographic Hash Functions, Digital Signature, Certificates, Certificate Authorities. Protection of Computing Resources: Secure Programs, Non-malicious Program Errors, Viruses and Other Malicious Code, Targeted Malicious Code, Methods of Control.	https://ocw.mit.edu/courses/6-875-cryptography-and-cryptanalysis-spring-2005/AICTE-prescribedsyllabus:https://www.aicte-india.org/sites/default/files/Model_Curriculum/AICTE%20-%20UG%20CSE.pdfIndustry Mapping:Wireshark, Packet Tracer,OPNET, NS3		9-11
7	SECURITY FEATURES & POLICIES IN OPERATING SYSTEM	Objects to be Protected, Protection Methods of Operating Systems, Memory Protection, File Protection, and User Authentication. Network, IP and Web Security	International Academia: (MIT Open Courseware): https://ocw.mit.edu/course s/6-828-operating-system- engineering-fall-2012/ AICTE-prescribed syllabus: <u>https://www.aicte- india.org/sites/default/files</u> /Model_Curriculum/AICT <u>E%20-%20UG%20CSE.p</u> df	3	Textbook-2 Chapters: 7.

	Industry Mapping:	
	Wireshark, Packet Tracer,	
	OPNET, NS3	

1. William Stallings: Cryptography and Network Security, seventh edition ISBN 978-1-292-15858-7 or sixth edition ISBN 978-0-273-79335-9.

2. Protocols and Architectures for Wireless Sensor Networks, H. Karl and A. Willig, Wiley Publishers, 2005.

3. Russ Housley, Tim Polk, "Planning for PKI: Best Practices Guide for Deploying Public Key Infrastructure," Wiley, March 2001, 352 pages.

4. John E. Canavan, "The Fundamentals of Network Security," Artech House, February 2001, 350 pages.

Reference books:

1. Andrew Mason, Mark J. Newcomb, "Cisco Secure Internet Security Solutions," Cisco Press, May 2001, 528 pages.

2. Warwick Ford, Michael S. Baum, "Secure Electronic Commerce: Building the Infrastructure for Digital Signatures and Encryption (2nd Edition)," Prentice Hall, December 2000, 620 pages.

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code- PECCS701B Course Title – Data Warehousing and Business Intelligence Credit – 3 Category – Professional Elective Course Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic knowledge of RDBMS

CO1	Students will be able to learn the general principles of Data Warehouse, Data Marts, Data Lake, and understand
	the importance of metadata, etc.

CO2	Students will be able to learn data warehouse architectures and models (Star, Snowflake and Fact Constellation),
	different OLAP techniques.
CO3	Students will be able to learn the concepts of data cube and implementation of data warehousing, best practices
	and issues.
CO4	Students will be able to know the concepts of business analysis, data visualisation techniques and get acquainted
	with the features of BI tools

Study Material	Coursera	<u>NPTEL</u>	Linkedin Learning
----------------	----------	--------------	-------------------

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Data Warehousing Concepts	Definition, Characteristics of a Data Warehouse, Data Marts, Data Lake, Identifying Business Data Flow & Processes, Data sources, ETL Overview, Data Extraction process, Transformation process, Assuring Data Quality, Transportation process, Maintaining Warehouse Data, Concept of Metadata	International Academia: (MIT Open Courseware): <u>https://ocw.mit.ed</u> <u>u/courses/15-062-</u> <u>data-mining-</u> <u>spring-</u> <u>2003/pages/syllab</u> <u>us/</u> (University of Texas at Dallas):	8	-	Textbook-1 Chapter 1: The Chess Pieces (Basic Elements of Data Warehousing) Textbook-2 Chapter 2: Data warehouse: the building Blocks

			https://dox.utdalla s.edu/syl60773 Makaut, WB- prescribed syllabus: https://makautexa m.net/aicte_detail s/Syllabus/CSE/se m6.pdf Industry Mapping: https://www.cours era.org/specializa tions/data- warehousing		Reference 1: Chapters: 1: Data Warehousing, Business Intelligence, and Dimensional Modelling Primer (<u>https://www.c</u> <u>oursera.org/sp</u> <u>ecializations/d</u> <u>ata-</u> warehousing)
2	Data Warehouse Architecture and Models	Warehouse architecture, Identifying Warehouse Data: Fact data, Dimension data, Hierarchies, Summaries (roll-ups), Data Warehouse models: Star, Snowflake and Fact Constellation, Modelling the Data Warehouse, User query requirements and User query progression, OLTP vs OLAP Access,	International Academia: (MIT Open Courseware): <u>https://ocw.mit.ed</u> <u>u/courses/15-062-</u> <u>data-mining-</u> <u>spring-</u> <u>2003/pages/syllab</u> <u>us/</u>	12	Textbook-1 Chapter 5: A First Course on Dimensional Modelling Chapter 8: Introducing Data Warehouse Architecture Chapter 9:

		Relational OLAP (ROLAP) Access, Multidimensional OLAP (MOLAP), OLAP Query Techniques, Introduction of Data Mining concepts, Introduction to Big Data, Hadoop	(University of Texas at Dallas): <u>https://dox.utdalla</u> <u>s.edu/syl60773</u> Makaut, WB- prescribed syllabus: <u>https://makautexa</u> <u>m.net/aicte_detail</u> <u>s/Syllabus/CSE/se</u> <u>m6.pdf</u> Industry Mapping: <u>https://www.cours</u> <u>era.org/specializa</u> <u>tions/data-</u> warehousing		Back Room Technical Architecture Textbook-2 Chapter 7: Architectural Components (https://www.c oursera.org/sp ecializations/d ata- warehousing)
3	Data Cube Computation, Implementation and Maintenance of Data Warehouse	Data cube concept, materialization of different data cubes, methods of data cube computation, multi-feature cubes Best practices of DW project Implementation and DW deployment process, and issues.	International Academia: (MIT Open Courseware): <u>https://ocw.mit.ed</u> <u>u/courses/15-062-</u> <u>data-mining-</u> <u>spring-</u>	8	Textbook-1 Chapter 19: Maintaining and Growing the Data Warehouse Textbook-2 Chapter 12: Data

			2003/pages/syllab		Extraction,
			<u>us/</u>		Transformation
			<u>us/</u> (University of Texas at Dallas): <u>https://dox.utdalla</u> <u>s.edu/syl60773</u> Makaut, WB- prescribed syllabus: <u>https://makautexa</u> <u>m.net/aicte_detail</u> <u>s/Syllabus/CSE/se</u> m6.pdf Industry Mapping: <u>https://www.cours</u> era.org/specializa		Transformation , and Loading (https://www.c oursera.org/sp ecializations/d ata- warehousing)
			tions/data-		
			<u>warehousing</u>		
4	BI Implementation	Key Drivers, Key	International	8	Reference 1:
	and Tools	Performance Indicators	Academia:		Chapter 21.
		and operational metrics, BI	(MIT Open		Big Data
		Architecture/ Framework,	Courseware):		Analytics
		Best Practices, Business	https://ogu.mit.cd		(letter // humanic -
		Decision Waking, Dig	<u>mips://ocw.mit.ed</u>		(<u>mups://www.c</u>
		Analytics – Objective	data-mining-		ecializations/d
		Curve, principles of	<u>spring-</u>		<u>ata-</u>

 1			
Analytics and tools, Dash	2003/pages/syllab		<u>warehousing</u>)
Boards, Scorecards,	<u>us/</u>		
Getting Data: Connections, Extracts, Metadata, Joins, Blends, Filters, Common Visualizations; Bar Charts, Treemaps, Area Charts, Pie Charts, Circle Charts, Box and Whisker, Histograms, Scatterplots, Line Charts, Geographic Visualizations,	(University of Southern California): <u>https://web-app.usc.edu/soc/s</u> yllabus/20201/16 272.pdf Makaut, WB- prescribed syllabus:		
Dashboards, Storyboards Overview of tools: Microsoft PowerBI, SAP Business Intelligence, Tableau, Oracle BI, SAS Business Intelligence	https://makautexa m.net/aicte_detail s/Syllabus/CSE/se m6.pdf Industry Mapping: https://www.cours era.org/specializa tions/data- warehousing		

1. Ralph Kimball (Author), Margy Ross (Author), Warren Thornthwaite (Author), Joy Mundy (Author), The Data Warehouse Lifecycle Toolkit 2nd Edition, Wiley.

2. Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.

Reference books:

- 1. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modelling", John Wiley & Sons
- 2. Sam Anahory, Dennis Murray, "Data Warehousing in the Real World", PEARSON

Online Resources:

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	3	1	1	1	1	2	1	2
CO2	3	2	3	2	3	1	1	1	1	2	1	2
CO3	3	3	3	2	3	1	1	1	1	2	2	2
CO4	3	2	3	2	3	1	1	1	1	2	2	2

3: Strong correlation

2: Medium correlation

University of Engineering and Management Institute of Engineering & Management, Salt Lake Campus

Institute of Engineering & Management, New Town Campus

University of Engineering & Management, Jaipur

Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code - PECCS701D Course Title - Computer Vision Credit – 3 Category – Professional Elective Semester – VII L:T:P:S – 3:0:0:0 Prerequisites - Familiarity with Python programming, including NumPy, OpenCV basics, and linear algebra fundamentals.

CO1	Understand and apply basic image processing techniques such as filtering, geometric transformations, and histogram operations.
CO2	Implement and evaluate feature detection and matching techniques for object recognition and image registration.
CO3	Apply segmentation algorithms and contour analysis methods for object extraction and shape analysis in images.
CO4	Design and train convolutional neural networks (CNNs) for image classification tasks and apply object detection models such as YOLO/SSD.
CO5	Demonstrate practical skills in using popular computer vision libraries (OpenCV, Keras, TensorFlow) to develop end-to-end vision pipelines.

Study Material Cou	oursera <u>NPTEL</u>	Linkedin Learning	Infosys Springboard 5G
--------------------	----------------------	-------------------	------------------------

Modul e NoTopicSub Topicand International AcademiaContact HoursQuestion Mapped with the ModuleReferen Textbod	Modul e No	Торіс	Sub Topic	Mapping with Industry and International Academia	Contact Hours	Assignment Question Mapped with the Module	Reference Textbooks
--	---------------	-------	-----------	--	------------------	--	------------------------

1	Image Processing Fundamental s	Introduction to Computer Vision Image Representation: Grayscale, RGB, Binary	<i>NPTEL:</i> Fundamentals of Digital Image Processing: <u>https://onlinecourses.npte</u> <u>l.ac.in/noc22_ee116/previ</u> <u>ew?utm_source=chatgpt.</u> <u>com</u>	9	 Implement a Python program to apply Gaussian blur, median filter, and sharpening on an image. Compare the results. 2. 	Text Book: Chapter 1 Page 1-44
		Basic Image Processing Operations: Filtering, Blurring, Sharpening Geometric Transformations : Scaling, Rotation, Translation	<i>International Academia:</i> (<i>MIT OCW</i>) Computational Photography <u>https://www.youtube.co</u> <u>m/playlist?list=PLU14u3c</u> <u>NGP61pwA6paIRZ30q1</u> <u>sjLE8b6c</u>		What is the difference between image blurring and sharpening? Explain with suitable filters.	
		Image Histograms and Histogram Equalization	<i>Industry Mapping:</i> Image Processing, Robotic Vision, AR/VR			

2:	Feature Detection and Matching	Edge Detection: Sobel, Canny Corner Detection: Harris Corner Detector Keypoint Detector and Description: SIFT, SURF, ORB Feature Matching: Brute-Force and FLANN based matcher	International Academia: (MIT OpenCV tutorials) <u>https://fab.cba.mit.edu/cl</u> <u>asses/865.15/people/des</u> <u>mond.lim/project-06.html</u> Industry Mapping: Autonomous Vehicle, AR/VR, Robotics	9	 Apply Canny edge detection on an image and visualize the edges. 2. Detects corners in an image using the Harris Corner Detector. 	Text Book 3: Chapter 4
3	Image Segmentatio n and	Image Thresholding:	NPTEL	9	1.	Text Book 1:

	Contour Analysis	Global, Adaptive Contour Detection and Analysis	(Computer Vision) <u>https://onlinecourses.npte</u> <u>l.ac.in/noc21_cs101/previ</u> <u>ew?utm_source=chatgpt.</u> <u>com</u>		Perform adaptive thresholding on an image with uneven illumination.	Chapter 10
		Morphological Operations Image Segmentation: Watershed, GrabCut	<i>Industry Mapping:</i> Used in biomedical imaging, satellite image analysis, surveillance		Detect contours in an image and calculate area, perimeter, and bounding box for each contour.	
4	Deep Learning for Computer Vision	Introduction to Convolutional Neural Networks (CNNs) CNN Architectures: LeNet, AlexNet, VGG	NPTEL (Deep Learning)	9	1. Build and train a simple CNN for CIFAR-10 or MNIST image classification. Q2. Apply transfer learning using a pretrained VGG16	Text Book 2: Chapter 1 - 4

Ima Cla: usir	age Issification ng CNNs	https://onlinecourses.npte l.ac.in/noc21_cs101/previ ew?utm_source=chatgpt. com	model to classify custom image dataset (flowers, animals, etc.).	
Obj Det YO basi	ject tection: DLO, SSD ics	Industry Mapping:		
Tra Lea Vis	insfer arning for sion Tasks	Essential for ML Engineer, AI Researcher, and Data Scientist roles		

- 1. "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods, Pearson
- 2. Deep Learning for Computer Vision" by Rajalingappaa Shanmugamani
- 3. Computer Vision: Algorithms and Applications" by Richard Szeliski

Reference books:

1. "Learning OpenCV 4" by Gary Bradski and Adrian

2. Programming Computer Vision with Python" by Jan Erik Solem

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	2	-	-	2
CO3	3	2	3	2	-	-	-	-	-	-	-	2
CO4	3	3	3	3	3	-	-	-	2	-	2	3

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code- OECCS701A Course Title – Enterprise Systems Category – Open Elective Course Credit – 3 Semester – VII L:T:P:S – 3:0:0:0 Pre-requisite – Basic knowledge of Business, Finance & Accounting, Awareness on Business Environment

CO1	Understand Enterprise systems models.
	Chuci stand Enter prise systems models.

CO2	Understand Enterprise Software architecture.
CO3	Design and implement ERP models.
CO4	Implement interactive networks and applications.
CO5	Develop models for ERP for large projects.

Module No.	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignments	Textbook Mapping
1	Introduction to Enterprise systems concepts	reatures, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse. Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales & Distribution	International Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final BTECH LSCM.pdf) Industry Mapping:	6	 Familiarization with ERPNext - open-source alternative to SAP. Familiarization with Odoo ERP software. Familiarization with anyLogistix software. 	Textbook-1 Chapters: 1, 2 and 3 Textbook-2 Chapters: 1-4, 11 and part V.

			ERPNext, anyLogistix, Odoo (<u>GitHub -</u> <u>frappe/erpnext:</u> <u>Free and Open</u> <u>Source Enterprise</u> <u>Resource Planning</u> (<u>ERP</u>),Case study – anyLogistix, Open <u>Source ERP and</u> <u>CRM Odoo</u>)			
2	Enterprise Resource Planning (ERP)Architecture and Technologies	Service Oriented Architecture (SOA): Principles of loose coupling, encapsulation, Interoperability. Decision Support System: On-Line Analytical Processing, Electronic Data Exchange, Customer Relationship Management (CRM), Supplier Relationship Management (SRM),	International Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e)AICTE- prescribed syllabus: (Final BTECH LSCM.pdf)Industry Mapping:	8	 Create a model of customer relationship management and business intelligence systems for catalogue and online retailers. Create a model of Supplier Relationship Management for Healthcare system. 	Textbook-1 Chapter: 3 Textbook-2 Chapter: part II.

			ERPNext,			
			anyLogistix,			
			Odoo			
			(GitHub -			
			frappe/erpnext:			
			Free and Open			
			Source			
			Enterprise			
			Resource			
			Planning			
			(ERP),Case			
			<u>study –</u>			
			<u>anyLogistix</u> ,			
			Open Source			
			ERP and CRM			
			<u>Odoo</u>)			
3	ERP Software	Introduction to MVC,		10	1. Create	Text Book-3
	Architecture and	MVC method of software			ASP.NET MVC	
	Technologies	development in a 3-tier			Application	Chapters:1 - 6.
		environment,			using Visual	Coursera
		Microsoft .NET			Studio.	course:
		framework, PHP, Ruby on			2. Create JSP	ASP.NET
		Rails, JavaScript, Ajax			application	Core MVC
		and Overview of SAP and			using MVC	[NET 8] - The
		Oracle Applications			framework	Complete
						Cuido
						Spacialization
						https://www.co
						urseru.org/spe
						<u>cializations/pa</u>
						<u>ckt-asp-net-</u>
						<u>core-mvc-net-</u>

						<u>8-the-</u>
4		Later heating AMDLC	Ter 4 error or 4° 1	10	1 Cauf 1	T
4	ERP Network	Introduction to MIPLS,	International	10	1. Configure and	l ext Book-4
	Architecture	(VDN) Storage area	Academia:		lest a VPIN	C1 + 1 10
		(VFN), Storage area	37 Notes:		2 Configure	Chapters: 1-12.
		Paals up strataging L agal	<u>J/ Works</u>		Z. Configure	
		A rea Network (LAN)	Enterprise VPN		Windows/Linux	Enterprise
		technologies and	MPLS Course		OS	Network
		products Data Centres	summary		3 Configure an	Infrastructure
		Firewalls Network	Lecture Notes		MPLS VPN in	: Coursera
		monitoring and	Logistics and		Cisco Packet	course
		enforcement of policies	Supply Chain		Tracer	https://www.co
		ERP Security Issues	Management		114001.	ursera.org/lear
		Authentication.	Engineering			<u>n/packt-</u>
		Authorisation, Access	Systems Division			enterprise-
		control, Roles, single-	MIT			network-
		sign on, Directory	<u>OpenCourseWar</u>			infrastructure-
		servers, Audit trails,	<u>e</u>)			pbclr?msockid
		Digital signatures,				=3e887050530
		Encryption, review of	AICTE-			967811ce4656
		IPSec, SSL.	prescribed			152bb66d3
			syllabus: (<u>Final</u>			152000005
			<u>BTECH</u>			
			<u>LSCM.pdf</u>)			
			Industry			
			Mapping:			
			ERPNext.			
			anvLogistix.			
			Odoo			
			(GitHub -			
			frappe/er			

			pnext: Free and Open Source Enterpris e Resource Planning (ERP),Ca se study – anyLogisti x, Open Source ERP and CRM Odoo)			
5	Trends in ERP	Enterprise Application Integration (EAI), ERP and E- Commerce, ERP and Internet, Future Directions in ERP	International Academia: (Lecture Notes Logistics and Supply Chain Management Engineering Systems Division MIT OpenCourseWar e) AICTE- prescribed syllabus: (Final	6	Design with the help of CASE tools to aid ERP Software acquisition process - Case study	Text Book-1 Chapter 11

BTECH	
LSCM.pdf)	
Industry	
Mapping:	
ERPNext,	
anyLogistix,	
Odoo	
(<u>GitHub -</u>	
<u>frappe/erpnext:</u>	
<u>Free and Open</u>	
<u>Source Enterprise</u>	
<u>Resource Planning</u>	
(ERP),Case study –	
anyLogistix, Open	
Source ERP and	
<u>CRM Odoo</u>)	

- 1. Alexis Leon, Enterprise Resource Planning, 2020,4th Edition, Tata McGraw Hill.
- 2. Alexis Leon, ERP Demystified, McGrawhill education.
- 3. Simone Chiaretta, Keyvan Nayyeri, Beginning ASP.NET MVC 1.0, Wrox Press.

4. A Practical Introduction to Enterprise Network and Security Management, Bongsik Shin, CRC Press Taylor & Francis Group. **Reference books:**

- 1. The Age of Metapreneurship: A Journey into the Future of Entrepreneurship Design of Enterprise Systems: Theory, Architecture, and Methods, Ronald Giachetti.
- 2. Entrepreneurship: The Practice and Mindset Paperback, by Heidi M. Neck (Author), Christopher P. Neck (Author), Emma L. Murray.

3. ENTREPRENEURSHIP: The Art, Science, and Process for Success, Charles E. Bamford Associate Professor of Strategy & Entrepreneurship (Author), Garry D.Bruton Dr.

Online Resources:

Coursera course:

1. Enterprise Systems, Jason Chan, University of Minnesota.

LinkedIn course:

1. Enterprise Architecture Foundations, Dave Swersky.

co-i o mapping.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	-
CO2	3	2	1	1	-	-	-	-	-	-	-	-
CO3	3	2	2	2	2	-	-	-	-	-	-	-
CO4	3	2	2	2	2	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	2

CO-PO Mapping:

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science

B.Tech in Computer Science and Engineering

DETAILED SYLLABUS

Course Code- OECCS701B Course Title – Economic Policies in India Credit – 3 Category – Open Elective Semester – VII L:T:P:S – 3:0:0:0 Prerequisite – Principles of Management

	Understand the historical evolution of India's economic policies.
CO1	

CO2	Analyze the impact of liberalization, privatization, and globalization on the Indian economy.
CO3	Evaluate sectoral economic policies and their influence on technology-driven industries.
CO4	Examine contemporary economic challenges and their technological implications.

Module	Topic	Sub-topics	Mapping with	Lecture	Corresponding	Textbook
No.			Industry and	Hours	Lab	Mapping
			International		Assignments	
			Academia			
1	Historical Overview	Economic policies in pre-	International	8	1. Design a	Textbook-1
	and Evolution of	independence India	Academia:		policy brief	C1
	Economic Policies	• The mixed economy			proposing an	Chapters: I to
		model post-independence	(MIT Open		alternative	8
		• The Five-Year Plans	Courseware):		industrial	
		and their impact	1		strategy for	
		• Industrial Policy	<u>https://ocw.mit.eau/</u>		post-	https://www
		Resolutions (1948, 1956,	<u>courses/14-//1-</u>		independence	$\frac{mps.//ww}{w}$
		1991)	<u>development-</u>		India.	org/learn/
		• The Green Revolution	<u>economics-fall-</u>		considering the	art_and_
		and agricultural reforms	<u>2021/</u>		limitations of	science-of-
			AICTE_prescribed		the 1956	economic-
			sullabus.		Industrial Policy	policy
			synabus:		Resolution.	
			https://www.aicte-		2. Formulate a	
			india.org/sites/defa		hypothetical	
			ult/files/Model Cur		Five-Year Plan	
			riculum/AICTE%?		for India	
			<u>1101111111111111111111111111111111111</u>			

			<u>0-</u> <u>%20UG%20CSE.p</u> <u>df</u> <i>Industry Mapping:</i> Public Sector Enterprises, Import Substitution Industrialization		focusing on inclusive agricultural growth, drawing lessons from the Green Revolution and earlier planning models.	
2	Liberalization, Privatization, and Globalization (LPG) Era	 Economic crisis of 1991 and the need for reforms Structural reforms under the LPG policy Impact of liberalization on industrial growth Privatization: Strategies and challenges Globalization and its effect on trade and investment 	International Academia: (MIT Open Courseware): <u>https://ocw.mit.edu/</u> courses/14-771- development- economics-fall- 2021/ AICTE-prescribed syllabus: <u>https://www.aicte- india.org/sites/defa</u> ult/files/Model_Cur riculum/AICTE%2 0- %20UG%20CSE.p df	8	 3. Design a policy roadmap for a developing economy facing a crisis similar to India's 1991 balance of payments crisis. 4. Formulate a new privatization model for India that balances efficiency, public accountability, and social welfare. 5. Construct a model industrial growth plan that leverages 	Textbook-2 Chapter: 6 <u>https://www.c</u> <u>oursera.org/l</u> <u>earn/art-and-</u> <u>science-of-</u> <u>economic-</u> <u>policy</u>

Industry Mapping: Foreign Direct Investment (FDI)	liberalization but addresses its sectoral disparities. 6. Develop a strategic globalization plan for India that enhances trade
	that enhances trade competitiveness while protecting domestic industries.

					I = _ ·	
3			International	14	7. Design an	Textbook-1
	Sectoral Economic	Agriculture and rural	Academia:		integrated rural	
	Policies and Their	development policies			development	Textbook-2
	Impact	• Industrial policies and	(MIT Open		policy that	Chapter 0
		• Industrial policies and	Courseware):		combines	Chapter 9
		MSME sector promotion			agricultural	https://www.c
		• Financial sector	https://ocw.mit.edu		reform, digital	oursera org/le
		reforms: Banking,	/courses/14-771-		innovation, and	oursera.org/ic
		insurance, and NBFCs	development-		rural employment	
		• Energy infrastructure	economics-fall-		generation.	<u>science-oi-</u>
		• Energy, infrastructure,	2021/		8. Formulate a	economic-
		and digital economy	<u>2021/</u>		strategic plan to	policy
		initiatives	AICTE-prescribed		boost the MSME	
		• Labor market policies	syllabus:		sector through	
		and social security	synuous.		policy innovation,	
		reforms	https://www.aicte-		access to credit,	
			india org/sites/defa		and digital	
			ult/filog/Model Cur		transformation.	
					9. Construct a	
			riculum/AICTE%2		model framework	
			<u>0-</u>		for inclusive	
			<u>%20UG%20CSE.p</u>		financial sector	
			df		reform covering	
					banks, insurance,	
			Industry Mapping:		and NBFCs for	
			T 1 T		underserved	
			Financial Inclusion		populations.	
			through NBFCs		10. Develop a	
			and Microfinance		sustainable	
			Institutions (MFIs)		infrastructure	
					policy integrating	
					renewable energy,	
					smart cities, and	
					digital	
					connectivity.	

					11. Create a labor policy blueprint that balances labor rights, gig economy flexibility, and universal social security.	
4	Contemporary Economic Policies and Challenges	 Fiscal and monetary policies: Role of RBI and government Digital India and fintech revolution Start-Up India and Make in India initiatives Environmental and 	International Academia: (MIT Open Courseware): <u>https://ocw.mit.edu/</u> <u>courses/14-771-</u> <u>development-</u>	6	12. Design a post-pandemic economic recovery plan focusing on employment generation, MSME revival, and inflation control. 13. Construct a	Textbook-1 Chapters:21,2 2, 23 Textbook-2 Chapter:2, 9,19 https://www.c oursera.org/le

sustainable economic policies • Challenges: Unemployment, income inequality, inflation, and regional disparities • Post-pandemic economic recovery strategies	economics-fall- 2021/ AICTE-prescribed syllabus: https://www.aicte- india.org/sites/defa ult/files/Model_Cur riculum/AICTE%2 0- %20UG%20CSE.p df Industry Mapping: FinTech and Digital Payment Ecosystems (e.g., UPI, Aadhaar- linked banking), Green Economy and ESG (Environmental, Social, and Governance)	sustainable development policy that aligns India's environmental goals with industrial growth targets. 14. Formulate a national fintech roadmap that accelerates financial inclusion and supports Digital India. 15. Design a comprehensive policy proposal to boost entrepreneurship in rural India under Start-Up India and Make in India missions.	arn/art-and- science-of- economic- policy
	Governance) Frameworks.	missions.	

1. "Indian Economy: Performance and Policies" by Uma Kapila

2. "Indian Economy" by Ramesh Singh

Reference book:

1. "The Indian Economy: Problems and Prospects" edited by Bimal Jalan

Online Resources: https://www.youtube.com/watch?v=haIUbZ4eOAs&list=PLXLsXwBXH6Bmjp8vfb7yuf5RF7jXceNQe

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	0	0	0	3	3	3	3	2	1	3
CO2	0	0	0	0	0	3	3	3	3	1	1	3
CO3	0	0	0	0	0	3	3	3	3	2	2	2
CO4	0	0	0	0	0	3	2	3	2	2	3	3

3: Strong correlation

2: Medium correlation

University of Engineering & Management, Kolkata University of Engineering & Management, Jaipur Institute of Engineering & Management, Kolkata Department of Computer Science B.Tech in Computer Science and Engineering DETAILED SYLLABUS

Course Code- ESP(CS)701 Course Title – Essential Studies for Professionals (CS) - VII Credit – 0.5 Category – Humanities & Social Sciences including Management course Semester – VII L:T:P:S – 2:0:0:0 Pre-requisite – Basic knowledge of Data Structures, Basics of Compiler, Operating systems and Computer network

CO1	To develop a detailed knowledge of compiler designs.
CO2	To learn all types of Data Base Management Systems' fundamentals.
CO3	To understand Operating Systems and its applications.
CO4	To use fundamentals of Computer networks and its methods.

Module Topic Sub-topics Mapping wi	II Lectu	1 ехтроок Маррing			
No. Industry an	l re				
Internation	l Hour				
Academia	S				
1Compiler DesignLexical analysis, parsing, syntax-directedInternational	6	1. G.K publishers			
translation. Runtime environments. Academia:		GATE Computer			
Intermediate code generation. Local		Science Engineering,			
optimization, Data flow analyses:		2. McGraw hill GATE			
constant propagation, likeness analysis,		2020 Computer			
common sub expression elimination AICTE-prescrit	ed	Science Engineering,			
syllabus:		3. Wiley GATE 2020			
		Computer Science			
Industry Mappi	ıg:	Engineering			
2 Databases Integrity constraints, normal forms. File International	12	1. G.K publishers			
organization, indexing (e.g., B and B+ Academia:		GATE Computer			
trees). Transactions and concurrency		Science Engineering,			
control (MIT Open		2. McGraw hill GATE			
Courseware):		2020 Computer			
AICTE-prescrit	ed	Science Engineering,			
svllabus:		3. Wiley GATE 2020			
		Computer Science			
Industry Mappa	ıg:	Engineering			
3Operating SystemProcesses, threads, inter-processInternational	12	1. G.K publishers			
communication, concurrency and Academia:		GATE Computer			
synchronization, Deadlock, CPU		Science Engineering,			
scheduling. Memory management and Courseware):		2. McGraw hill GATE			
virtual memory, File system. Flow and Courseware).		2020 Computer			
error control techniques, switching. AICTE-prescrit	ed	Science Engineering,			
IPv4/IPv6, routers and routing algorithms syllabus:		3. Wiley GATE 2020			
(distance vector, link state). ICP/UDP		Computer Science			
and sockets, congestion control.		Engineering			
		Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi.	Industry Mapping:		
---	-------------------	--	---	---	--
4	Computer Networks	Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit- switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email	International Academia: (MIT Open Courseware): AICTE-prescribed syllabus: Industry Mapping:	6	 G.K publishers GATE Computer Science Engineering, McGraw hill GATE 2020 Computer Science Engineering, Wiley GATE 2020 Computer Science Engineering

Text books:

- 1. G.K publishers GATE Computer Science Engineering,
- 2. McGraw hill GATE 2020 Computer Science Engineering,
- 3. Wiley GATE 2020 Computer Science Engineering

Online Resources:

Module	Platform	Course Link
Compiler Design	NPTEL	<u>Link</u>
Compiler Design	Stanford	https://youtu.be/sm0QQO-WZIM
Databases	NPTEL	Link
Databases	Coursera (IBM)	Link
Operating Systems	NPTEL	Link
Operating Systems	Coursera (Google)	Link
Computer Networks	NPTEL	Link
Computer Networks	Coursera (Stanford)	Link

CO-PO Mapping:

CO \ PO	PO1 (Enginee ring Knowled ge)	PO2 (Proble m Analysis)	PO3 (Desig n/Dev of Solutio ns)	PO4 (Invest igation)	PO5 (Mode rn Tool Usage)	PO6 (Engin eer & Society)	PO7 (Envir onmen t & Sustai nabilit y)	PO8 (Ethics)	PO9 (Indivi dual & Team Work)	PO10 (Commu nication)	PO11 (Project Manage ment)	PO12 (Life- long Learnin g)
CO1	2	1	1	1	1	-	-	-	-	-	-	3
CO2	2	1	1	1	1	-	-	-	1	1	1	3
CO3	2	1	1	1	1	1	-	_	1	1	1	3
CO4	2	1	1	1	1	1	-	-	1	1	1	3

3: Strong correlation

2: Medium correlation

1: Weak correlation